Introduction to Quantitative Geology
Lesson 13.2
Low-temperature thermochronology

Lecturer: David Whipp
david.whipp@helsinki.fi

4.12.17
Goals of this lecture

- Define **low-temperature thermochronology**

- Introduce three common types of low-temperature thermochronometers
 - **Helium dating** (The (U-Th)/He method)
 - **Fission-track dating** (The FT method)
 - **Argon dating** (The $^{40}\text{Ar}/^{39}\text{Ar}$ method)
What is low-temperature thermochronology?

- **Low-T thermochronology** uses thermochronometers with effective closure temperatures below ~300°C
What is low-temperature thermochronology?

<table>
<thead>
<tr>
<th>Ar-based systems</th>
<th>Effective closure temperature [°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hornblende</td>
<td>500±50°C</td>
</tr>
<tr>
<td>Muscovite</td>
<td>350±50°C</td>
</tr>
<tr>
<td>Biotite</td>
<td>300±50°C</td>
</tr>
<tr>
<td>K-Feldspar</td>
<td>150-350°C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(U-Th)/He systems</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Zircon</td>
<td>200-230°C</td>
</tr>
<tr>
<td>Titanite</td>
<td>150-200°C</td>
</tr>
<tr>
<td>Apatite</td>
<td>75±5°C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fission-track systems</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Titanite</td>
<td>265-310°C</td>
</tr>
<tr>
<td>Zircon</td>
<td>240±20°C</td>
</tr>
<tr>
<td>Apatite</td>
<td>110±10°C</td>
</tr>
</tbody>
</table>

- **Low-T thermochronology** uses thermochronometers with effective closure temperatures below ~300°C
Why is thermochronology useful?

• Thermochronometer ages provide a constraint on the **time-temperature history** of a rock sample

• In many cases, the age is the time since the sample cooled below the system-specific effective closure temperature
Why is thermochronology useful?

Because the temperatures to which thermochronometers are sensitive generally occur at depths of 1 to >15 km and ages are typically 1 to 100’s of Ma, they record long-term cooling through the upper part of the crust and can be used to calculate long-term average rates of tectonics and erosion.
Why is low-T thermochronology useful?

- **Low-temperature thermochronometers** are unique because of their increased sensitivity to topography, erosional and tectonic processes.
High temperature = no topography sensitivity

(a) High T_c thermochronometers

- For thermochronometers with a high effective closure temperature, the closure temperature isotherm will not be influenced by surface topography.
- Note that age will increase with elevation as a result of the topography.

Braun, 2002
High temperature = no topography sensitivity

(a) High T_c thermochronometers

- For thermochronometers with a high effective closure temperature, the closure temperature isotherm will not be influenced by surface topography.

- Note that age will increase with elevation as a result of the topography.
Low-temperature = sensitive to topography

- The effective closure temperature isotherm for low-temperature thermochronometers will generally be “bent” by the surface topography, changing the age-elevation trend.
- The lower the value of T_c, the more its geometry will resemble the surface topography.

Fig. 1. Three scenarios in which exhumation rate can be estimated from the slope of an AER. (a) High-T_c thermochronometers, the slope is equal to the exhumation rate. (b) Low-T_c thermochronometers, the slope overestimates the exhumation rate. (c) A decrease in relief leads to a further overestimate of the exhumation rate from the AER. A large decrease in relief can even lead to a negative slope.
Low-temperature = sensitive to topography

- The effective closure temperature isotherm for low-temperature thermochronometers will generally be “bent” by the surface topography, changing the age-elevation trend.

- The lower the value of T_c, the more its geometry will resemble the surface topography.

Change in pathway

EPSL 6231 31-5-02

Braun, 2002
Sensitivity to changing topography

(c) Low T_c thermochronometry + Relief change

- Because T_c is sensitive to topography for low-temperature thermochronometers, it is possible to record changes in topography in the past (!)

- Here, topographic relief decreases and the age-elevation trend gets inverted (older at low elevation)
Sensitivity to changing topography

(c) Low T_c thermochronometry + Relief change

- Because T_c is sensitive to topography for low-temperature thermochronometers, it is possible to record changes in topography in the past (!)

- Here, topographic relief decreases and the age-elevation trend gets inverted (older at low elevation)
Common thermochronometers

Ar-based systems
- Hornblende (500±50°C)
- Muscovite (350±50°C)
- Biotite (300±50°C)
- K-Feldspar (150-350°C)

(U-Th)/He systems
- Zircon (200-230°C)
- Titanite (150-200°C)
- Apatite (75±5°C)

Fission-track systems
- Titanite (265-310°C)
- Zircon (240±20°C)
- Apatite (110±10°C)
Helium dating - (U-Th)/He method

• (U-Th)/He thermochronology is based on the production and accumulation of ^4He from parent isotopes ^{238}U, ^{235}U, ^{232}Th and ^{147}Sm

• ^4He (α particles) produced during decay chains
 - ^{238}U - 8 α decays
 - ^{235}U - 7 α decays
 - ^{232}Th - 6 α decays
 - ^{147}Sm - 1 α decay

Fig. 3.3, Braun et al., 2006
Helium dating - (U-Th)/He method

Production of alpha particles by decay

- Ignoring the contribution of 147Sm, we can say that the production of 4He is

$$^4\text{He} = 8 \times ^{238}\text{U} \left(e^{\lambda_{238} t} - 1 \right)$$
$$+ 7 \times \frac{^{238}\text{U}}{137.88} \left(e^{\lambda_{235} t} - 1 \right)$$
$$+ 6 \times ^{232}\text{Th} \left(e^{\lambda_{232} t} - 1 \right)$$

where 4He, 238U and 232Th are the present-day abundances of those isotopes, t is the He age and the λ values are the decay constants.
Helium dating - (U-Th)/He method

- Ages are calculated by measuring the 4He concentration by heating and degassing the mineral sample, then separately measuring the U and Th concentrations, for example by using an inductively coupled plasma mass spectrometer (ICP-MS)

Ehlers and Farley, 2003
Potential ejection of 4He (alpha particles)

- Selected mineral grains for dating should be high-quality, euhedral minerals free of mineral inclusions with a prismatic crystal form.
- Why does the crystal form matter? Alpha particles travel ~20 µm when created and may be ejected from or injected to the sample crystal.
- We can correct for this!

Fig. 3.4, Braun et al., 2006
Fission-track dating - FT method

- **Fission-track dating** is based on measuring the accumulation of damage trails in a host crystal as the result of spontaneous fission of ^{238}U

- Fission splits the ^{238}U atom into two fragments that repel and damage the crystal lattice over the distance they travel

- In apatite, fresh fission tracks are $\sim 16 \ \mu\text{m}$ long and $\sim 11 \ \mu\text{m}$ long in zircon

- Similar to diffusive loss of ^4He, these damage trails will be repaired, or anneal, at temperatures above T_c

Etched fission tracks in apatite

(A) Spontaneous tracks revealed on a polished internal surface of ~ 27.8 Ma Fish Canyon Tuff zircon. The crystallographic c-axis lies approximately vertical. (B) Induced tracks implanted on a muscovite detector (Brazilian Ruby clear) that were derived from the region of the photograph (A). (C) Spontaneous tracks on a polished internal surface of ~ 33 Ma apatite crystal. The c-axis lies approximately horizontal. (Photos by TT) (C) Spontaneous tracks on a polished internal surface of ~ 33 Ma apatite crystal. The c-axis lies approximately horizontal. (Photo by POS) Scale bars are $10 \ \mu\text{m}$.

Tagami and O'Sullivan, 2005
Fission-track dating - FT method

- To be visible under a microscope, tracks must be chemically etched and enlarged.
- At this point, tracks can be manually (or automatically) counted to determine the track density.
- The FT age can be calculated as

$$ t = \frac{1}{\lambda_D} \ln \left(\frac{\lambda_D}{\lambda_f} \frac{N_s}{^{238}U} + 1 \right) $$

where λ_D is the ^{238}U decay constant, λ_f is the fission decay constant, N_s is the number of spontaneous fission tracks in the sample and ^{238}U is the number of ^{238}U atoms.

Tagami and O'Sullivan, 2005
Argon dating - $^{40}\text{Ar}/^{39}\text{Ar}$ method

- **Argon dating** is based on the decay of ^{40}K to radiogenic ^{40}Ar
- Potassium is one of the most abundant elements in the crust, making argon dating one of the more common thermochronology methods
- $^{40}\text{Ar}/^{39}\text{Ar}$ dating is used on white micas, biotite, K-feldspar and amphiboles
Argon dating - $^{40}\text{Ar}/^{39}\text{Ar}$ method

- $^{40}\text{Ar}/^{39}\text{Ar}$ ages are found by irradiating a sample (and standard) with fast neutrons, producing ^{39}Ar from ^{39}K in the sample.

- The $^{40}\text{Ar}/^{39}\text{Ar}$ ratio is then measured as samples are either degassed entirely or step heated (next slide).

- The $^{40}\text{Ar}/^{39}\text{Ar}$ age can be calculated as

$$t = \frac{1}{\lambda} \ln \left(1 + J \frac{^{40}\text{Ar}}{^{39}\text{Ar}} \right)$$

where λ is the decay constant of ^{40}K, $^{40}\text{Ar}/^{39}\text{Ar}$ is the measured sample $^{40}\text{Ar}/^{39}\text{Ar}$ ratio and J is the irradiation factor

$$J = \frac{e^{\lambda t} - 1}{^{40}\text{Ar}/^{39}\text{Ar}}$$

where t is a known age for a standard and $^{40}\text{Ar}/^{39}\text{Ar}$ is its measured $^{40}\text{Ar}/^{39}\text{Ar}$ ratio.
Argon dating - Step heating

• **Step heating** of 40Ar/39Ar samples involves stepwise heating of samples to gradually release Ar as the sample temperature increases.

• With this, it is possible to see the 40Ar distribution in the sample, which is a function of the sample cooling history.

Harrison and Zeitler, 2005
Argon dating - Step heating

- As we have seen on the previous slide,
 (a) flat age spectra indicate rapid cooling of a rock sample (at time t_1, here)
 (b) spectra with lower concentrations initially either indicate partial reheating of the sample at time t_2 or slow cooling from t_1 to t_2
 (c) an unexpected behavior with higher Ar concentrations initially (i.e., near the rim of the grain)!

- This “excess” Ar may have been taken up from surrounding minerals
Common thermochronometers

<table>
<thead>
<tr>
<th>Ar-based systems</th>
<th>Hornblende (500±50°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Muscovite (350±50°C)</td>
</tr>
<tr>
<td></td>
<td>Biotite (300±50°C)</td>
</tr>
<tr>
<td></td>
<td>K-Feldspar (150-350°C)</td>
</tr>
<tr>
<td>(U-Th)/He systems</td>
<td>Zircon (200-230°C)</td>
</tr>
<tr>
<td></td>
<td>Titanite (150-200°C)</td>
</tr>
<tr>
<td></td>
<td>Apatite (75±5°C)</td>
</tr>
<tr>
<td>Fission-track systems</td>
<td>Titanite (265-310°C)</td>
</tr>
<tr>
<td></td>
<td>Zircon (240±20°C)</td>
</tr>
<tr>
<td></td>
<td>Apatite (110±10°C)</td>
</tr>
</tbody>
</table>

Effective closure temperature [°C]
Recap

- **Why is low-temperature thermochronology a particularly interesting tool for those interested in geomorphology or active tectonics?**

- **How is are (U-Th)/He or $^{40}\text{Ar}/^{39}\text{Ar}$ methods different from fission-track dating?**
Recap

- Why is low-temperature thermochronology a particularly interesting tool for those interested in geomorphology or active tectonics?

- How is are (U-Th)/He or $^{40}\text{Ar}/^{39}\text{Ar}$ methods different from fission-track dating?
Lab and final project primer

• The final two laboratory exercises will be based on **thermochronology**

• The exercises will be divided into two parts, with the second exercise building on what you will have done the previous week

• As usual, you will modify a Python code to produce some plots and provide short answers to some related questions

• **The questions you will answer for the write-ups for these two labs will be relatively simple**, only to let me know that you were able to do the requested tasks, because…
Lab and final project primer

• …you will expand on the work you do in the final two labs in a **formal written report**

• The report will be **no longer than 6-8 typed pages** (single spaced) including figures and references

• The idea is to describe some background on the data you will work with, the concept for its interpretation and your results/conclusions

• The structure for the report will be described in detail on the final laboratory exercise handout
References

