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Goals of this lecture

• Introduce the basic relationship for viscous flow of rock and 
ice

• Explore two different end-member types of viscous flow in a 
channel

• Discuss the effects of temperature on viscosity and 
nonlinear viscosity
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Examples of viscous flow: Alpine glaciers

• Alpine glaciers flow downhill under their own weight
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Riggs Glacier, Alaska, USA
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• Modern uplift rates are relatively rapid, 
especially beneath the Gulf of Bothnia

6.10 Postglacial Rebound 435

Figure 6.14 Subsidence due to glaciation and the subsequent postglacial
rebound.

discussed in Section 2–2. However, mountain building is so slow that dy-
namic effects can be neglected; that is, the mantle beneath a mountain is in
essential hydrostatic equilibrium throughout the life cycle of the mountain.
The growth and melting of ice sheets, on the other hand, occur sufficiently
fast so that dynamic effects are important in the adjustment of the mantle
to the changing surface load. The thick ice sheet that covers Greenland has
depressed the surface several kilometers so that it is below sea level in places.
The load of the ice sheet has forced mantle rock to flow laterally, allowing
the Earth’s surface beneath the ice to subside. During the last great ice
age Scandinavia was covered with a thick ice sheet that caused considerable
subsidence of the surface. When the ice sheet melted about 10,000 years
ago the surface rebounded. The rate of rebound has been determined by
dating elevated beaches. We will now show how these data can be used to
determine the solid-state viscosity of the mantle. The process of subsidence
and rebound under the loading and unloading of an ice sheet is illustrated
in Figure 6–14.

To determine the response of the Earth’s mantle to the removal of an ice

Helsingin Sanomat, 19.3.2012

Turcotte and Schubert, 2002

Glacio isostatic adjustment
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Surface uplift due to glacio isostatic adjustment 
is controlled by flow of the underlying 
asthenosphere
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• Fluid: Any material that flows in response to an applied stress

• Deformation is continuous

• Stress is proportional to strain rate 
 
 
 
where ! is the shear stress, "#⁄"$ is the velocity gradient 
(equivalent to strain rate) and # is the velocity in the  
%-direction

⌧ / du

dz

What is a fluid?
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⌧ = ⌘
du

dz

Viscosity, defined

• Constant of proportionality & is known as the dynamic 
viscosity, or often simply viscosity  
 
 

• Viscosity has units of Pa s (Pascal seconds) or kg m-1 s-1

• You can think of viscosity as a resistance to flow

• Higher viscosity → more resistant to flow, and vice versa

• The terms kinematic viscosity and bulk viscosity (or 
compressibility) are not the same thing as the dynamic 
viscosity

7

1-D:

http://en.wikipedia.org

Low viscosity

High viscosity
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Approximate viscosities of common materials

• Viscosity of natural materials is hugely variable

• Range of almost 20 orders of magnitude for 
rocks and lava
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Material Viscosity [Pa s]

Air 10-5

Water 10-3

Honey 101

Basaltic lava 103

Ice 1010

Rhyolite lava 1012

Rock salt 1017

Granite 1020

A honey dipper works 
because of the 

viscosity of honey
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• A Newtonian material has a linear relationship between 
shear stress and strain rate

• In other words, & is a constant value that does not depend 
on the stress state or flow velocity

• Air, water and thin motor oil are practically Newtonian fluids

• Rocks rarely deform as Newtonian fluids

⌧ = ⌘
du

dz

Newtonian (linear) viscosity
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u =
1

2⌘

dp

dx

(z2 � hz)� u0z

h

+ u0

416 Fluid Mechanics

Figure 6.2 One-dimensional channel flows of a constant viscosity fluid.

To evaluate the constants, we must satisfy the boundary conditions that
u= 0 at y = h and u= u0 at y = 0. These boundary conditions are known as
no-slip boundary conditions. A viscous fluid in contact with a solid bound-
ary must have the same velocity as the boundary. When these boundary
conditions are satisfied, Equation (6–11) becomes

u =
1

2µ

dp

dx
(y2 − hy) −

u0y

h
+ u0. (6.12)

If the applied pressure gradient is zero, p1 = p0 or dp/dx = 0, the solution
reduces to the linear velocity profile

u = u0

(

1 −
y

h

)

. (6.13)

This simple flow, sketched in Figure 6–2a, is known as Couette flow. If the
velocity of the upper plate is zero, u0 = 0, the velocity profile is

u =
1

2µ

dp

dx
(y2 − hy). (6.14)

When we rewrite this in terms of distance measured from the centerline of
the channel y′, where

y′ = y −
h

2
, (6.15)

$

$

$

Linear viscous flow in a channel
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Fig. 6.2a, Turcotte and Schubert, 2014

• The general solution for the 1-D velocity of a fluid across a 
channel with boundary conditions (1) # = 0 at $ = ℎ and 
(2) # = #0 at $ = 0 is  
 
 
 
where "(⁄"% is the applied pressure gradient
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Styles of linear viscous flow: Couette flow
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Figure 6.2 One-dimensional channel flows of a constant viscosity fluid.

To evaluate the constants, we must satisfy the boundary conditions that
u= 0 at y = h and u= u0 at y = 0. These boundary conditions are known as
no-slip boundary conditions. A viscous fluid in contact with a solid bound-
ary must have the same velocity as the boundary. When these boundary
conditions are satisfied, Equation (6–11) becomes

u =
1

2µ

dp

dx
(y2 − hy) −

u0y

h
+ u0. (6.12)

If the applied pressure gradient is zero, p1 = p0 or dp/dx = 0, the solution
reduces to the linear velocity profile

u = u0

(

1 −
y

h

)

. (6.13)

This simple flow, sketched in Figure 6–2a, is known as Couette flow. If the
velocity of the upper plate is zero, u0 = 0, the velocity profile is

u =
1

2µ

dp

dx
(y2 − hy). (6.14)

When we rewrite this in terms of distance measured from the centerline of
the channel y′, where

y′ = y −
h

2
, (6.15)

• Couette flow occurs when there is (1) a difference in velocity 
between the channel boundaries and (2) effectively no 
pressure gradient 
 

$

$

$

Fig. 6.2a, Turcotte and Schubert, 2002
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$

$

$

Couette flow solution

• If we assume "(⁄"% = 0,  
 
 
 
reduces to 
 

12

Fig. 6.2a, Turcotte and Schubert, 2002



www.helsinki.fi/yliopistoIntro to Quantitative Geology

• Poiseuille flow occurs when (1) there is no velocity difference 
between the walls of the channel and (2) a pressure gradient is 
applied 
 

Poiseuille flow
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Figure 6.2 One-dimensional channel flows of a constant viscosity fluid.

To evaluate the constants, we must satisfy the boundary conditions that
u= 0 at y = h and u= u0 at y = 0. These boundary conditions are known as
no-slip boundary conditions. A viscous fluid in contact with a solid bound-
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This simple flow, sketched in Figure 6–2a, is known as Couette flow. If the
velocity of the upper plate is zero, u0 = 0, the velocity profile is
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$ʹ

$
$

$

$ $ʹ

$ʹ

$ʹ

Fig. 6.2b, Turcotte and Schubert, 2002
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u =
1

2⌘

dp

dx

(z2 � hz)

u =
1

2⌘

dp

dx

(z2 � hz)� u0z

h

+ u0

Poiseuille flow solution

• Using the same equation as we have previously, we can start 
with the general solution

• If we set #0 = 0, the velocity solution becomes 
 

14

416 Fluid Mechanics

Figure 6.2 One-dimensional channel flows of a constant viscosity fluid.
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Fig. 6.2b, Turcotte and Schubert, 2002
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Salt tectonics

• One example of a geological system that can exhibit both 
Couette and Poiseuille flow behavior is the flow of rock salt 
beneath sedimentary overburden
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http://commons.wikimedia.org

Finlay Point  
Cape Breton Island, Nova Scotia, Canada

Head of salt diapir

http://commons.wikimedia.org/wiki/File:Cape-Breton-Diapir-Finlay-Point_038.jpg
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⌘ = A0e
Q/RTK

Temperature dependence

• In general, rock viscosity depends strongly temperature 
 
 
 
where *0 and + are material properties known as the  
pre-exponent constant and activation energy, , is the 
universal gas constant and -K is temperature in Kelvins 

• What happens to rock viscosity at -K approaches 
absolute zero? 

• What happens as -K approaches infinity? 

16
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Temperature-dependent viscosity

• The viscous strength of quartz, for 
example, rapidly decreases with increasing 
temperature

• Note that the viscous strength is simply 
the viscosity & multiplied by a nominal 
strain rate

• How might temperature-
dependent viscosity be important 
in the Earth? 

17

Viscous strength of quartz
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Fig. 5.13, Stüwe, 2007
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Temperature-dependent viscosity
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• Note that the viscous strength is simply 
the viscosity & multiplied by a nominal 
strain rate
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viscosity be important in the Earth? 

18

Viscous strength of quartz

�d

z←
 In

cr
ea

si
ng

 T
em

pe
ra

tu
re

Fig. 5.13, Stüwe, 2007



www.helsinki.fi/yliopistoIntro to Quantitative Geology

⌧n = Ae↵
du

dz

Nonlinear viscosity

• In general, rocks will deform about 8 times as quickly when the 
applied force is doubled

• Relationship between shear stress and strain rate is thus 
NOT linear

• Mathematically, we can say 
 
 
 
where . is the power law exponent and *eff is a material 
constant

• The power law exponent for many rocks is 2-4

• *eff is similar to &, but has units of Pan s

19
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Flow of glaciers

• Gravity drives the flow of alpine 
glaciers from higher elevation zones 
of accumulation to lower elevation 
zones of ablation

• Depending on the temperature of the 
region and the ice itself, the glacier 
may either be frozen to the bedrock 
(cold-based) or sliding along the 
bedrock (warm-based)

20

Zone of
accumulation

Zone of
ablation

Equilibrium
line

Fig. 9.14, Ritter et al., 2002
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How do glaciers move?

• Basal sliding 

• Bottom of the glacier sliding along the 
substrate

• Can occur as a result of slip atop a thin 
water layer, melting/re-freezing or slip 
atop water-saturated sediment

• Internal deformation 

• Ice flow is nonlinear viscous and sensitive 
to temperature

• Deformation is concentrated near the 
bed

21

Briksdal Glacier, Norway
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Flow of glaciers

• In the exercise this week, we will look more closely at glacial 
flow

• Velocity across a glacial valley

• Down an incline

22

6.2 One-Dimensional Channel Flows 417

Figure 6.3 Unidirectional flow of a constant thickness layer of viscous fluid
down an inclined plane.

we find

u =
1

2µ

dp

dx

(

y′2 −
h2

4

)

. (6.16)

The velocity profile is a parabola that is symmetric about the centerline of
the channel, as shown in Figure 6–2b.

Problem 6.1 Show that the mean velocity in the channel is given by

ū = −
h2

12µ

dp

dx
+

u0

2
. (6.17)

Problem 6.2 Derive a general expression for the shear stress τ at any
location y in the channel. What are the simplified forms of τ for Couette
flow and for the case u0 = 0?

Problem 6.3 Find the point in the channel at which the velocity is a
maximum.

Problem 6.4 Consider the steady, unidirectional flow of a viscous fluid
down the upper face of an inclined plane. Assume that the flow occurs in a
layer of constant thickness h, as shown in Figure 6–3. Show that the velocity
profile is given by

u =
ρg sinα

2µ
(h2 − y 2), (6.18)

where y is the coordinate measured perpendicular to the inclined plane
(y = h is the surface of the plane), α is the inclination of the plane to
the horizontal, and g is the acceleration of gravity. First show that

dτ

dy
= −ρg sinα, (6.19)

$
$
$

Fig. 6.3, Turcotte and Schubert, 2014
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Recap

• Viscous flow is a common deformation behavior for rock and 
ice, where the deformation rate is proportional to the applied 
shear stress

• Couette and Poiseuille flows refer to end-member behaviors 
of linear viscous channel flows, and depend on the channel 
boundary velocities and pressure changes along the channel

• Most rocks do not exhibit a linear relationship between stress 
and strain rate (nonlinear viscosity), and their viscosity is 
strongly temperature-dependent
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