

- Lecture: Advection of the Earth's surface
 - The advection equation
 - Application: Bedrock river incision

• Exercise 4: **River advection**

Introduction to Quantitative Geology

Advection of the Earth's surface: Fluvial incision and rock uplift

Lecturer: David Whipp david.whipp@helsinki.fi

19.11.2018

• Introduce the **advection equation**

Discuss application of the advection equation to bedrock river erosion

What is advection?

- Advection involves a lateral translation of some quantity
 - For example, the transfer of heat by <u>physical movement</u> of molecules or atoms within a material. A type of convection, mostly applied to heat transfer in solid materials.

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

What is advection?

- Advection involves a lateral translation of some quantity
 - For example, the transfer of heat by <u>physical movement</u> of molecules or atoms within a material. A type of convection, mostly applied to heat transfer in solid materials.

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

q = -	$ ho\kapparac{\partial h}{\partial x}$
$\frac{\partial h}{\partial t} = -$	$-rac{1}{ ho}rac{\partial q}{\partial x}$

- Last week we were introduced to the diffusion equation
 - Flux (transport of mass or transfer of energy) proportional to a gradient
 - Conservation of mass: <u>Any change in flux results in a</u> <u>change in mass/energy</u>

Diffusion equation

Diffusion

$$\frac{\partial h}{\partial t} = -\kappa \frac{\partial^2 h}{\partial x^2}$$

 $q = -\rho \kappa \frac{\partial h}{\partial x}$

 $\frac{\partial h}{\partial t} = -\frac{1}{\rho} \frac{\partial q}{\partial x}$

- Substitute the upper equation on the left into the lower to get the classic diffusion equation
 - q = sediment flux per unit length
 - ρ = bulk sediment density
 - κ = sediment diffusivity
 - h = elevation
 - x = distance from divide
 - t = time

• This week we meet the **advection equation**

- This week we meet the **advection equation**
- Two key differences:
 - Change in mass/energy with time proportional to gradient, rather than curvature (or change in gradient)
 - Advection coefficient c has units of [L/T], rather than $[L^2/T]$

River channel profiles

Fig. I.7, Pelletier, 2008

DiffusionAdvection $\frac{\partial h}{\partial t} = -\kappa \frac{\partial^2 h}{\partial x^2}$ $\frac{\partial h}{\partial t} = c \frac{\partial h}{\partial x}$

- This week we meet the **advection equation**
- Two key differences:
 - Change in mass/energy with time proportional to gradient, rather than curvature (or change in gradient)
 - Advection coefficient c has units of [L/T], rather than $[L^2/T]$

River channel profiles

Fig. 1.7, Pelletier, 2008

Diffusion		Advection	
∂h	$\partial^2 h$	∂h	∂h
$\overline{\partial t} =$	$-\kappa \overline{\partial x^2}$	$\overline{\partial t} =$	$c \overline{\partial x}$

- This week we meet the **advection equation**
- Two key differences:
 - Change in mass/energy with time proportional to gradient, rather than curvature (or change in gradient)
 - Advection coefficient c has units of [L/T], rather than $[L^2/T]$

River channel profiles

• This week we meet the **advection equation**

Fig. 1.7, Pelletier, 2008

- (b) Two key differences:
 - Change in mass/energy with time proportional to gradient, rather than curvature (or change in gradient)
 - Advection coefficient c has units of [L/T], rather than $[L^2/T]$

Diffusion

Advection

Эh	$\partial^2 h$	∂h	∂h
$\frac{1}{\partial t} =$	$= -\kappa \overline{\partial x^2}$	$\overline{\partial t} =$	$c \overline{\partial x}$

- This week we meet the advection equation
- Two key differences:
 - Change in mass/energy with time proportional to gradient, rather than curvature (or change in gradient)
 - Advection coefficient c has units of [L/T], rather than $[L^2/T]$

Diffusion

Advection

∂h	$\partial^2 h$	∂h	∂h
$\overline{\partial t}$ =	$= -\kappa \overline{\partial x^2}$	$\overline{\partial t} =$	$c \overline{\partial x}$

- This week we meet the advection equation
- Two key differences:
 - Change in mass/energy with time proportional to gradient, rather than curvature (or change in gradient)
 - Advection coefficient c has units of [L/T], rather than $[L^2/T]$

Diffusion

Advection

∂h	$\partial^2 h$	∂h	∂h
$\overline{\partial t}$	$= -\kappa \overline{\partial x^2}$	$\overline{\partial t} =$	$c \overline{\partial x}$

- This week we meet the **advection equation**
- Two key differences:
 - Change in mass/energy with time proportional to gradient, rather than curvature (or change in gradient)
 - Advection coefficient c has units of [L/T], rather than $[L^2/T]$

Diffusion

Advection

∂h	$\partial^2 h$	∂h	∂h
∂t	$= -\kappa \overline{\partial x^2}$	$\overline{\partial t} =$	$c \overline{\partial x}$

Diffusion: Rate of erosion <u>depends on change</u> in hillslope gradient (curvature)

- Advection: Rate of erosion is <u>directly</u> proportional to hillslope gradient
 - Also, <u>no conservation of mass</u> (deposition)

- Surface elevation changes in <u>direct proportion to surface slope</u>
- Result is lateral propagation of the topography or river channel profile
- Although this is interesting, it is <u>not that common in nature</u>

Advection of the Earth's surface: An example

Bedrock river erosion

 Purely an advection problem with a <u>spatially variable</u> <u>advection coefficient</u>

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Bedrock river erosion

Drainage basin

• Not much bedrock being eroded here...

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Intro to Quantitative Geology

www.helsinki.fi/yliopisto

Bedrock river erosion

Drainage basin

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

 Rapid bedrock incision has formed a steep gorge in this case

 t3
 t2
 t1

 Fig. I.7, Pelletier, 2008
 1

• With a constant advection coefficient c, we predict <u>lateral</u> <u>migration of the river profile at a constant rate</u> (c)

- With a constant advection coefficient c, we predict <u>lateral</u> <u>migration of the river profile at a constant rate</u> (c)
 - Do you think this works in real (bedrock) rivers?

t3 t2 t1

- With a constant advection coefficient c, we predict <u>lateral</u> <u>migration of the river profile at a constant rate</u> (c)
 - Do you think this works in real (bedrock) rivers?
 - What might affect the rate of lateral migration?

What affects the efficiency of river erosion?

- The amount of water flowing in the river (discharge) and sediment
- The slope of the river channel
- The strength of the underlying bedrock

What affects the efficiency of river erosion?

- The amount of water flowing in the river (discharge) and sediment
- The slope of the river channel
- The strength of the underlying bedrock

• Are these constant?

• Rather than being constant, the rate of lateral advection in river systems is <u>spatially variable</u>

$$\frac{\partial h}{\partial t} = \frac{k_f}{w} Q \frac{\partial h}{\partial x}$$

where k_f is a material property of the bedrock (erodibility), *w* is the channel width, and *Q* is discharge

• Rather than being constant, the rate of lateral advection in river systems is <u>spatially variable</u>

$$\frac{\partial h}{\partial t} = \frac{k_f}{w} Q \frac{\partial h}{\partial x}$$

where k_f is a material property of the bedrock (erodibility), *w* is the channel width, and *Q* is discharge

• This is known as the **stream-power erosion model**

Stream-power model of river incision

 If we <u>assume precipitation is uniform</u> in the drainage basin, discharge *Q* will <u>scale with drainage basin area</u>, so we can modify our equation to read

 $\frac{\partial h}{\partial t} = \frac{k_f}{w} Q \frac{\partial h}{\partial x} \longrightarrow \frac{\partial h}{\partial t} = K A^m S^n$

where K is an erosional efficiency factor (accounts for lithology, climate, channel geometry, sediment supply, etc. (!)), A is upstream drainage area, S is channel slope, and m and nare area and slope exponents

• If we assume the drainage basin area increases with distance from the drainage divide x, we can replace the area with an estimate $A = x^{5/3}$

Based on our stream-power erosion equation, what general form would a channel profile take?

- If we assume we have reached a steady state $(\partial h/\partial t = 0)$ and n = 1, erosion must balance uplift U everywhere
- If we further assume precipitation is constant, bedrock erodibility is constant and $A = x^{5/3}$, how would the channel steepness vary as you move downstream from the divide?

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI • Think about how S would change as x increases

Evolution of a channel profile

- A few stream-power erosion observations:
 - Stream power <u>increases</u> <u>downstream as the discharge</u> <u>grows</u>
 - <u>Steeper slopes occur upstream</u> where the discharge is low
 - Incision <u>migrates upstream</u> until a balance is attained between erosion and uplift

• What is the main difference between the advection and diffusion equations?

• What is special about the stream power erosion model compared to the general advection equation?

• What is the main difference between the advection and diffusion equations?

• What is special about the stream power erosion model compared to the general advection equation?

Allen, P.A. (1997). Earth Surface Processes (First edition.). Wiley-Blackwell.

Pelletier, J. D. (2008). Quantitative modeling of earth surface processes (Vol. 304). Cambridge University Press.