Class overview today - December 3,2018

® Part | - Basic concepts of thermochronology
® Basic concepts of thermochronology
® FEstimating closure temperatures
® Part |l - Low-temperature thermochronology (online only)
® Definition of low-temperature thermochronology
® Three common low-temperature thermochronometers

e Part lll - Quantifying erosion with thermochronology
(online only)

® Basic concepts of heat transfer as a result of erosion

® Estimation of exhumation rates from thermochronometers
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Introduction to Quantitative Geology
Lesson 6.2
Low-temperature thermochronology
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Goals of this lecture

® Define low-temperature thermochronology

® |[ntroduce three common types of low-temperature
thermochronometers

® Helium dating (The (U-Th)/He method)
® Fission-track dating (The FT method)

® Argon dating (The 40Ar/39Ar method)
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What is low-temperature thermochronology?

® Low-T thermochronology uses thermochronometers with
effective closure temperatures below ~300°C

Intro to Quantitative Geology www.helsinki.fi/yliopisto 5



What is low-temperature thermochronology?
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® Low-T thermochronology uses thermochronometers with
effective closure temperatures below ~300°C
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Why is thermochronology useful?
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® Thermochronometer ages provide a constraint on the
time-temperature history of a rock sample

® In many cases, the age is the time since the sample cooled
below the system-specific effective closure temperature
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Why is thermochronology useful?
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® Because the temperatures to which thermochronometers are

sensitive generally occur at depths of | to >15 km and ages are
typically | to 100’s of Ma, they record long-term cooling
through the upper part of the crust and can be used to
calculate long-term average rates of tectonics and erosion
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Why is low=T thermochronology useful?
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® Low-temperature thermochronometers are unique

because of their increased sensitivity to topography,
erosional and tectonic processes
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High temperature = no topography sensitivity

(a) High T¢ thermochronometers

Elevation, h

Age, a

Braun, 2002

® For thermochronometers with a high effective closure
temperature, the closure temperature isotherm will not be

influenced by surface topography

® Note that age will increase with elevation as a result of the
topography
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High temperature = no topography sensitivity

(a) High T¢ thermochronometers

Elevation, h

Exhumation pathway

Age, a

Braun, 2002

® For thermochronometers with a high effective closure
temperature, the closure temperature isotherm will not be

influenced by surface topography

® Note that age will increase with elevation as a result of the
topography

Intro to Quantitative Geology www.helsinki.fi/yliopisto



Low-temperature = sensitive to topography

(b) Low T¢ thermochronometry

Elevation, h

Age, a
Braun, 2002

® The effective closure temperature isotherm for low-
temperature thermochronometers will generally be “bent” by

the surface topography, changing the age-elevation trend

® The lower the value of T, the more its geometry will
resemble the surface topography
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Low-temperature = sensitive to topography

(b) Low T¢ thermochronometry

Elevation, h

Change in pathway —__

71_

Age, a
Braun, 2002

® The effective closure temperature isotherm for low-
temperature thermochronometers will generally be “bent” by

the surface topography, changing the age-elevation trend

® The lower the value of T, the more its geometry will
resemble the surface topography
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Sensitivity to changing topography

(c) Low Tc thermochronometry + Relief change

Elevation, h

Age,a
Braun, 2002

® Because T is sensitive to topography for low-temperature
thermochronometers, it is possible to record changes in

topography in the past (!)

® Here, topographic relief decreases and the age-elevation
trend gets inverted (older at low elevation)
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Sensitivity to changing topography

(c) Low Tc thermochronometry + Relief change

Change in pathway ——

Elevation, h

P Age,a
Braun, 2002

® Because T is sensitive to topography for low-temperature
thermochronometers, it is possible to record changes in

topography in the past (!)

® Here, topographic relief decreases and the age-elevation
trend gets inverted (older at low elevation)
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Common thermochronometers

Intro to Quantitative Geology

Effective closure temperature [°C]

www.helsinki.fi/yliopisto
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Helium dating - (U-Th)/He method
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Fig. 3.3, Braun et al., 2006

Intro to Quantitative Geology

(U-Th)/He thermochronology is based
on the production and accumulation of

“He from parent isotopes 238U, 235U,
232Th and '¥/Sm

‘He (a particles) produced during decay
chains

o 238l -8 « decays
o 23U -7 o decays

® 232Th -6 a decays

 [4Sm - | a decay
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Helium dating - (U-Th)/He method

Production of alpha particles
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Helium dating - (U-Th)/He method

Ehlers and Farley, 2003

Nice, datable apatites

Not-so-nice apatites

Intro to Quantitative Geology

Ages are calculated by measuring
the “He concentration by heating
and degassing the mineral sample,
then separately measuring the U
and Th concentrations, for example
by using an inductively coupled

plasma mass spectrometer (ICP-
MS)
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o emission

Helium dating - (U-Th)/He method

Potential ejection of 4He
(alpha particles)

® Selected mineral grains for dating should be

high-quality, euhedral minerals free of mineral
@ inclusions with a prismatic crystal form

® Why does the crystal form matter?

mptatatr Alpha particles travel ~20 ym when
created and may be ejected from or

injected to the sample crystal

Ejection
possible

0'5‘\ /
% _ 100
distance (um)

® We can correct for this!

Fig. 3.4, Braun et al., 2006
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Fission-track dating - FT method

Etched fission tracks in apatite ® Fission-track dating is based on

measuring the accumulation of damage
trails in a host crystal as the result of

spontaneous fission of 238U

® Fission splits the 238U atom into two

fragments that repel and damage the
crystal lattice over the distance they

travel

® |n apatite, fresh fission tracks are ~16
um long and ~| | pym long in zircon

® Similar to diffusive loss of “He, these

damage trails will be repaired, or anneal, at

temperatures above T,

Tagami and O’Sullivan, 2005
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Fission-track dating - FT method
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Intro to Quantitative Geology

To be visible under a microscope, tracks
must be chemically etched and enlarged

At this point, tracks can be manually (or
automatically) counted to determine
the track density

The FT age can be calculated as

1 Ap Vg
t = —1 -1
)\Dn<)\f238U )

where Ap is the 238U decay constant, As

is the fission decay constant, Ns is the
number of spontaneous fission tracks in
the sample and 238U is the number of
238J atoms
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Argon dating - 90Ar/3°Ar method

® Argon dating is based on the decay of 49K to radiogenic 40Ar

® Potassium is one of the most abundant elements in the
crust, making argon dating one of the more common
thermochronology methods

® “OAr/3%Ar dating is used on white micas, biotite, K-feldspar and
amphiboles
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Argon dating - 40Ar/3° Ar method

4OAr/3%Ar ages are found by irradiating a sample (and standard)
with fast neutrons, producing 3°Ar from 3°K in the sample

The 9Ar/3°Ar ratio is then measured as samples are either
degassed entirely or step heated (next slide)

The 40Ar/39Ar age can be calculated as

1 WAr
tlen<1 I J39AI‘>

where A is the decay constant of 40K, 40Ar/3°Ar is the

measured sample “0Ar/3%Ar r)%;cio and | is the irradiation factor
et — 1
J =
10Ar /39 Ar
where t is a known age for a standard and “0Ar/3%Ar is its
measured “OAr/3°Ar ratio
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Argon dating - Step heating

Rapid cooling
OAr
39Ar
rim center rim
0 50 100

% 39Ar released

Slow cooling

4O0Ar

rim center rim
| I I —
0 50 100

% 39Ar released

Harrison and Zeitler, 2005

Step heating of 9Ar/3Ar samples involves
stepwise heating of samples to gradually
release Ar as the sample temperature
InCreases

With this, it is possible to see the 40Ar
distribution in the sample, which is a
function of the sample cooling history
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Apparent Age

—~
—_

Argon dating - Step heating

® As we have seen on the previous slide,

OAr/3?Ar age spectra (a) flat age spectra indicate rapid cooling

T o > of a rock sample (at time t|, here)

(b) spectra with lower concentrations

C initially either indicate partial reheating
of the sample at time t2 or slow cooling

from t| to t

(c) an unexpected behavior with higher Ar
concentrations initially (i.e., near the rim

in)!
— = of the grain)!
raction °Ar released

Fig. 3.1, Braun et al,, 2006 ® This “excess” Ar may have been taken

up from surrounding minerals

Intro to Quantitative Geology www.helsinki.fi/yliopisto 26



Common thermochronometers
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Recap

® Why is low-temperature thermochronology a particularly

interesting tool for those interested in geomorphology or
active tectonics!?

® How is are (U-Th)/He or 9Ar/3? Ar methods different from
fission-track dating?
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Recap

® Why is low-temperature thermochronology a particularly

interesting tool for those interested in geomorphology or
active tectonics?

® How is are (U-Th)/He or 49Ar/3?Ar methods different from
fission-track dating?
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Final project primer

® The final two exercises will be based on thermochronology

® The exercises will be divided into two parts, with the
second exercise building on what you will have done the
previous week

® As usual, you will write/modify a Jupyter notebook code to
produce some plots and provide short answers to some
related questions

® The questions you will answer for the write-ups for these
two exercises will be relatively simple, only to let me know
that you were able to do the requested tasks, because...
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Lab and final project primer

® ...you will expand on the work you do in the final two labs in
a formal written report

® The report will be no longer than 6-8 typed pages (single
spaced) including figures and references

® The idea is to describe some background on the data you will
work with, the concept for its interpretation and your results/
conclusions

® The structure for the report is described in detail on the
course webpage
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