Class overview today - December 2, 2019

- Part I - Basic concepts of thermochronology
 - Basic concepts of thermochronology
 - Estimating closure temperatures
- Part II - Low-temperature thermochronology (online only)
 - Definition of low-temperature thermochronology
 - Three common low-temperature thermochronometers
- Part III - Quantifying erosion with thermochronology (online only)
 - Basic concepts of heat transfer as a result of erosion
 - Estimation of exhumation rates from thermochronometers
Low-temperature thermochronology

Lecturer: David Whipp
david.whipp@helsinki.fi

2.12.19
Goals of this lecture

• Define **low-temperature thermochronology**

• Introduce three common types of low-temperature thermochronometers

 • **Helium dating** (The (U-Th)/He method)

 • **Fission-track dating** (The FT method)

 • **Argon dating** (The $^{40}\text{Ar}/^{39}\text{Ar}$ method)
What is low-temperature thermochronology?

- **Low-T thermochronology** uses thermochronometers with effective closure temperatures **below ~300°C**
What is low-temperature thermochronology?

- **Low-T thermochronology** uses thermochronometers with effective closure temperatures below ~300°C

<table>
<thead>
<tr>
<th>Ar-based systems</th>
<th>(U-Th)/He systems</th>
<th>Fission-track systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hornblende (500±50°C)</td>
<td>Zircon (200-230°C)</td>
<td>Titanite (265-310°C)</td>
</tr>
<tr>
<td>Muscovite (350±50°C)</td>
<td>Titanite (150-200°C)</td>
<td>Titanite (240±20°C)</td>
</tr>
<tr>
<td>Biotite (300±50°C)</td>
<td></td>
<td>Apatite (110±10°C)</td>
</tr>
<tr>
<td>K-Feldspar (150-350°C)</td>
<td></td>
<td>Apatite (75±5°C)</td>
</tr>
</tbody>
</table>

- Muscovite (350±50°C)
- Biotite (300±50°C)
- K-Feldspar (150-350°C)
- Hornblende (500±50°C)

- Zircon (200-230°C)
- Titanite (150-200°C)
- Apatite (75±5°C)

- Zircon (240±20°C)
- Titanite (265-310°C)
- Apatite (110±10°C)
Why is thermochronology useful?

- Thermochronometer ages provide a constraint on the time-temperature history of a rock sample.
- In many cases, the age is the time since the sample cooled below the system-specific effective closure temperature.
Why is thermochronology useful?

- Because the temperatures to which thermochronometers are sensitive generally occur at depths of 1 to >15 km and ages are typically 1 to 100's of Ma, they record long-term cooling through the upper part of the crust and can be used to calculate long-term average rates of tectonics and erosion.
Why is *low-T* thermochronology useful?

- **Low-temperature thermochronometers** are unique because of their increased sensitivity to topography, erosional and tectonic processes.
High temperature = no topography sensitivity

(a) High T_c thermochronometers

- For thermochronometers with a high effective closure temperature, the closure temperature isotherm will not be influenced by surface topography.
- Note that age will increase with elevation as a result of the topography.
High temperature = no topography sensitivity

(a) High T_c thermochronometers

• For thermochronometers with a high effective closure temperature, the closure temperature isotherm will not be influenced by surface topography.

• Note that age will increase with elevation as a result of the topography.
Low-temperature = sensitive to topography

- The effective closure temperature isotherm for low-temperature thermochronometers will generally be “bent” by the surface topography, changing the age-elevation trend.

- The lower the value of T_c, the more its geometry will resemble the surface topography.
Low-temperature = sensitive to topography

- The effective closure temperature isotherm for low-temperature thermochronometers will generally be “bent” by the surface topography, changing the age-elevation trend

- The lower the value of T_c, the more its geometry will resemble the surface topography
Because T_c is sensitive to topography for low-temperature thermochronometers, it is possible to record changes in topography in the past (!)

Here, topographic relief decreases and the age-elevation trend gets inverted (older at low elevation)

(c) Low T_c thermochronometry + Relief change

Past topography

Because T_c is sensitive to topography for low-temperature thermochronometers, it is possible to record changes in topography in the past (!)

Here, topographic relief decreases and the age-elevation trend gets inverted (older at low elevation)
Sensitivity to changing topography

(c) Low T_c thermochronometry + Relief change

- Because T_c is sensitive to topography for low-temperature thermochronometers, it is possible to record changes in topography in the past (!)

- Here, topographic relief decreases and the age-elevation trend gets inverted (older at low elevation)
Common thermochronometers

<table>
<thead>
<tr>
<th>Ar-based systems</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>(U-Th)/He systems</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Fission-track systems</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Helium dating - (U-Th)/He method

- (U-Th)/He thermochronology is based on the production and accumulation of 4He from parent isotopes 238U, 235U, 232Th and 147Sm.

- 4He (α particles) produced during decay chains:
 - 238U - 8 α decays
 - 235U - 7 α decays
 - 232Th - 6 α decays
 - 147Sm - 1 α decay
Helium dating - (U-Th)/He method

Production of alpha particles by decay

- Ignoring the contribution of 147Sm, we can say that the production of 4He is

$$^4\text{He} = 8 \times ^{238}\text{U} \left(e^{\lambda_{238} t} - 1 \right) + 7 \times \frac{^{238}\text{U}}{137.88} \left(e^{\lambda_{235} t} - 1 \right) + 6 \times ^{232}\text{Th} \left(e^{\lambda_{232} t} - 1 \right)$$

where 4He, 238U and 232Th are the present-day abundances of those isotopes, t is the He age and the λ values are the decay constants.
Helium dating - (U-Th)/He method

Ages are calculated by measuring the 4He concentration by heating and degassing the mineral sample, then separately measuring the U and Th concentrations, for example by using an inductively coupled plasma mass spectrometer (ICP-MS)

Nice, datable apatites

Not-so-nice apatites

Ehlers and Farley, 2003
Helium dating - (U-Th)/He method

- Selected mineral grains for dating should be high-quality, euhedral minerals free of mineral inclusions with a prismatic crystal form
- Why does the crystal form matter? Alpha particles travel ~20 µm when created and may be ejected from or injected to the sample crystal
- We can correct for this!

Fig. 3.4, Braun et al., 2006
Fission-track dating - FT method

- **Fission-track dating** is based on measuring the accumulation of damage trails in a host crystal as the result of spontaneous fission of ^{238}U

- Fission splits the ^{238}U atom into two fragments that repel and damage the crystal lattice over the distance they travel

- In apatite, fresh fission tracks are ~ 16 μm long and ~ 11 μm long in zircon

- Similar to diffusive loss of ^4He, these damage trails will be repaired, or anneal, at temperatures above T_c

Etched fission tracks in apatite
(A) (B)

(C)

Tagami and O'Sullivan, 2005
Fission-track dating - FT method

- To be visible under a microscope, tracks must be chemically etched and enlarged.
- At this point, tracks can be manually (or automatically) counted to determine the track density.
- The FT age can be calculated as

\[t = \frac{1}{\lambda_D} \ln \left(\frac{\lambda_D}{\lambda_f} \frac{N_s}{^{238}\text{U}} + 1 \right) \]

where \(\lambda_D \) is the \(^{238}\text{U} \) decay constant, \(\lambda_f \) is the fission decay constant, \(N_s \) is the number of spontaneous fission tracks in the sample and \(^{238}\text{U} \) is the number of \(^{238}\text{U} \) atoms.
Argon dating - 40Ar/39Ar method

- **Argon dating** is based on the decay of 40K to radiogenic 40Ar.

- Potassium is one of the most abundant elements in the crust, making argon dating one of the more common thermochronology methods.

- 40Ar/39Ar dating is used on white micas, biotite, K-feldspar and amphiboles.
Argon dating - $^{40}\text{Ar}/^{39}\text{Ar}$ method

- $^{40}\text{Ar}/^{39}\text{Ar}$ ages are found by irradiating a sample (and standard) with fast neutrons, producing ^{39}Ar from ^{39}K in the sample.

- The $^{40}\text{Ar}/^{39}\text{Ar}$ ratio is then measured as samples are either degassed entirely or step heated (next slide).

- The $^{40}\text{Ar}/^{39}\text{Ar}$ age can be calculated as

$$t = \frac{1}{\lambda} \ln \left(1 + J \frac{^{40}\text{Ar}}{^{39}\text{Ar}} \right)$$

where λ is the decay constant of ^{40}K, $^{40}\text{Ar}/^{39}\text{Ar}$ is the measured sample $^{40}\text{Ar}/^{39}\text{Ar}$ ratio and J is the irradiation factor

$$J = \frac{e^{\lambda t} - 1}{^{40}\text{Ar}/^{39}\text{Ar}}$$

where t is a known age for a standard and $^{40}\text{Ar}/^{39}\text{Ar}$ is its measured $^{40}\text{Ar}/^{39}\text{Ar}$ ratio.
Argon dating - Step heating

- Step heating of $^{40}\text{Ar}/^{39}\text{Ar}$ samples involves stepwise heating of samples to gradually release Ar as the sample temperature increases.

- With this, it is possible to see the ^{40}Ar distribution in the sample, which is a function of the sample cooling history.

Harrison and Zeitler, 2005
Argon dating - Step heating

As we have seen on the previous slide,

(a) flat age spectra indicate rapid cooling of a rock sample (at time t_1, here)

(b) spectra with lower concentrations initially either indicate partial reheating of the sample at time t_2 or slow cooling from t_1 to t_2

(c) an unexpected behavior with higher Ar concentrations initially (i.e., near the rim of the grain)!

This “excess” Ar may have been taken up from surrounding minerals.
Common thermochronometers

<table>
<thead>
<tr>
<th>Thermochronometer</th>
<th>Effective Closure Temperature [°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ar-based systems</td>
<td></td>
</tr>
<tr>
<td>Hornblende</td>
<td>500±50°C</td>
</tr>
<tr>
<td>Muscovite</td>
<td>350±50°C</td>
</tr>
<tr>
<td>Biotite</td>
<td>300±50°C</td>
</tr>
<tr>
<td>K-Feldspar</td>
<td>150-350°C</td>
</tr>
<tr>
<td>(U-Th)/He systems</td>
<td></td>
</tr>
<tr>
<td>Zircon</td>
<td>200-230°C</td>
</tr>
<tr>
<td>Titanite</td>
<td>150-200°C</td>
</tr>
<tr>
<td>Apatite</td>
<td>75±5°C</td>
</tr>
<tr>
<td>Fission-track systems</td>
<td></td>
</tr>
<tr>
<td>Titanite</td>
<td>265-310°C</td>
</tr>
<tr>
<td>Zircon</td>
<td>240±20°C</td>
</tr>
<tr>
<td>Apatite</td>
<td>110±10°C</td>
</tr>
</tbody>
</table>
Recap

• Why is low-temperature thermochronology a particularly interesting tool for those interested in geomorphology or active tectonics?

• How is are (U-Th)/He or 40Ar/39Ar methods different from fission-track dating?
Recap

• Why is low-temperature thermochronology a particularly interesting tool for those interested in geomorphology or active tectonics?

• How is are (U-Th)/He or 40Ar/39Ar methods different from fission-track dating?
Final project primer

- The final two exercises will be based on **thermochronology**

- The exercises will be **divided into two parts**, with the second exercise building on what you will have done the previous week

- As usual, you will write/modify a Jupyter notebook code to produce some plots and provide short answers to some related questions

- **The questions you will answer for the write-ups for these two exercises will be relatively simple**, only to let me know that you were able to do the requested tasks, because…
Lab and final project primer

- …you will expand on the work you do in the final two labs in a formal written report
- The report will be no longer than 6-8 typed pages (single spaced) including figures and references
- The idea is to describe some background on the data you will work with, the concept for its interpretation and your results/conclusions
- The structure for the report is described in detail on the course webpage
References

