

Class overview today - December 2, 2019

- Part I Basic concepts of thermochronology
 - Basic concepts of thermochronology
 - Estimating closure temperatures
- Part II Low-temperature thermochronology (online only)
 - Definition of low-temperature thermochronology
 - Three common low-temperature thermochronometers
- Part III Quantifying erosion with thermochronology (online only)
 - Basic concepts of heat transfer as a result of erosion
 - Estimation of exhumation rates from thermochronometers

Introduction to Quantitative Geology Lesson 6.1

Basic concepts of thermochronology

Lecturer: David Whipp david.whipp@helsinki.fi

2.12.19

• Introduce the basic concepts of thermochronology

 Discuss the closure temperature concept and how closure temperatures are estimated

 Popular dating technique for studying long-term tectonic and erosional processes (i.e., stuff we've been learning)

Spanish Pyrenees

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Intro to Quantitative Geology

www.helsinki.fi/yliopisto

Why thermochronology?

• Inherently linked to **crustal heat transfer processes** (advection, diffusion, production, etc.)

 Incorporates many equations we've seen and many other concepts presented earlier in the course (hillslope processes, river erosion, heat conduction/advection, basic geostatistics)

Geochronology versus thermochronology

- **Geochronology** is the science of dating geological materials, and in many ways most radioisotopic chronometers are also thermochronometers
- An important distinction lies in what the ages mean and their interpretation
 - Geochronological ages are generally interpreted as ages of the materials (crystallization ages)
 - Thermochronological ages are often interpreted as the time since the material cooled below a given temperature (cooling ages)

General thermochronology terms

Thermochronometer A radioisotopic system consisting of:

- a radioactive parent
- a radiogenic daughter isotope or crystallographic feature
- the mineral in which they are found

Fig I.I, Braun et al., 2006

General thermochronology terms

Thermochronometry

The analysis, practice, or application of a thermochronometer to understand thermal histories of rocks or minerals

Fig I.I, Braun et al., 2006

General thermochronology terms

Thermochronometry

The analysis, practice, or application of a thermochronometer to understand thermal histories of rocks or minerals

Thermochronology

The thermal history of a rock, mineral, or geologic terrane.

Fig I.I, Braun et al., 2006

The aim of thermochronology

Tectonics + Surface Processes = Exhumation = Cooling

 In most modern applications of thermochronology, the goal is to use the recorded thermal history to provide insight into past tectonic or erosional (surface) processes

- To do this, it is essential to link the temperature to which a thermochronometer is sensitive to a depth in the Earth
 - This is not easy, and the field of quantitative thermochronology is growing rapidly as a result

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

- Daughter products are <u>continually produced</u> within a mineral as a result of radioactive decay
- Daughter products may be lost due to thermally activated diffusion
 - The temperature below which the daughter product is retained depends on the daughter product and host mineral

- **Daughter products** are <u>continually produced</u> within a mineral as a result of radioactive decay
- Daughter products may be lost due to thermally activated diffusion
 - The temperature below which the daughter product is retained depends on the daughter product and host mineral

HELSINGIN YLIOPISTO

UNIVERSITY OF HELSINKI

NGFORS UNIVERSITE

'ERSITY OF HELSINKI

Effective closure temperature, defined

Fig I.6a, Braun et al., 2006

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Defined by Dodson (1973), the closure temperature is the 'temperature of a thermochronological system at the time corresponding to its apparent age'

• This concept is quite useful, as we can thus <u>relate a</u> <u>measured age to a temperature</u> in the Earth

- Unfortunately, closure temperatures vary as a function of the thermochronological system, mineral size, chemical composition and cooling rate
 - This definition also only works when <u>cooling is</u> <u>monotonic</u> (no reheating)

Influence of cooling rate on effective T_c

- In general, <u>the effective closure temperature</u> for a given thermochronometer system will increase with increasing cooling rate
 - For the retention of ⁴He in apatite, the effective closure temperature is ~40°C at a cooling rate of 0.1 °C/Ma and ~80°C at a rate of 100°C/Ma
- The absolute difference in effective closure temperature is also larger for higher temperature thermochronometers
 - ► ~40°C for ⁴He in apatite
 - ~I 30°C for ⁴⁰Ar in hornblende

• With the idea of an effective closure temperature, we now have the main concept of thermochronology - a date will ideally reflect the time since the rock sample was at T_c

• But, what causes cooling?

- Occurs as a result of erosion and removal of overlying rock bringing relatively warm rock to the surface
- Can take place in convergent, extensional, strike-slip or inactive tectonic settings
- Most common "cooling type" for thermochronology

Erosional exhumation

Erosion at surface

- Occurs as a result of erosion and removal of overlying rock bringing relatively warm rock to the surface
- Can take place in convergent, extensional, strike-slip or inactive tectonic settings
- Most common "cooling type" for thermochronology

Erosional exhumation

Erosion at surface

- Occurs as a result of erosion and removal of overlying rock bringing relatively warm rock to the surface
- Can take place in convergent, extensional, strike-slip or inactive tectonic settings
- Most common "cooling type" for thermochronology

- Generally occurs in extensional settings
- Uplifted footwall will also experience some erosional exhumation in most cases

Other cases of rock cooling

- Rock cooling can also occur
 - Following emplacement of an igneous body or volcanic deposit
 - Typically, thermochronology is not useful in these cases as the cooling is rapid and geochronological and thermochronological ages will be similar
 - Following reheating by
 - Burial in a sedimentary basin and subsequent exhumation
 - Emplacement of proximal igneous intrusions or volcanics

Radioisotopic chronometer ages

• The general equation for an isotopic age is

$$t = \frac{1}{\lambda} \ln \left(1 + \frac{N_{\rm d}}{N_{\rm p}} \right)$$

where t is the isotopic age, λ is the radioactive decay constant, $N_{\rm d}$ is the concentration of the daughter product and $N_{\rm p}$ is the concentration of the parent isotope

• For thermochronometers, we know that the <u>concentration of</u> <u>the daughter product will vary</u> not only <u>as a result of</u> <u>radioactive decay</u>, but also <u>due loss via solid-state diffusion</u>

Solid-state diffusion

Parent and daughter isotopes in a crystal

- Thermochronometer daughter products are <u>not suitable to be</u> <u>incorporated in the host mineral's crystal lattice</u>
 - As 'foreign' isotopes, they are thus mobile and will diffuse within the crystal
 - Their diffusion can be modelled using the standard diffusion equation

$$\frac{\partial N_{\rm d}}{\partial t} = D(T) \frac{\partial^2 N_{\rm d}}{\partial x^2} + P \qquad \text{I-D}$$

Alpha decay

Parent isotope

- "Normal" atom
- Daughter isotope

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI where D(T) is the temperature dependent diffusivity (see next slide), $\partial^2 N_d / \partial x^2$ is the second derivative of the daughter product concentration and P is the daughter production rate

Temperature-dependent diffusion

• Temperature dependence for diffusion is typically modelled as

$$\frac{D(T)}{a^2} = \frac{D_0}{a^2} e^{-E_{\rm a}/(RT_{\rm K})}$$

where D_0 is the diffusivity at infinite temperature (diffusion constant), *a* is the diffusion domain, E_a is the activation energy, *R* is the gas constant and T_K is temperature in Kelvins

- For simple systems, the diffusion domain *a* is typically the size of the mineral itself
- The activation energy E_a is the minimum energy that must be put into the system in order for diffusion to occur

Temperature-dependent diffusion

With the temperature-dependent diffusion concept in mind, there are essentially <u>3</u> <u>different temperatures</u> we might consider

• The 'open system' temperature T_o The time/temperature that correspond

The time/temperature that corresponds to the lower limit to the fully open system

• The closure temperature T_c

The temperature of the system at the time corresponding to its age (Dodson)

• The blocking temperature T_{b}

The upper temperature limit of fully closed system behavior

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Dodson's effective closure temperature

- Dodson (1973) introduced a method for <u>calculating the</u> <u>closure temperature of a thermochronological system</u> based on the observed diffusion parameters and the rock/mineral cooling rate
- If we assume that once a rock enters the partial retention zone, the <u>temperature will vary as the inverse of time $(T \propto I/t)$ </u>, it is possible to find an approximate solution to the <u>temperature-dependent diffusion equation</u> with a <u>diffusivity</u>

 $D(t) = D(0) \mathrm{e}^{-t/\tau}$

where τ is is the time taken for the diffusivity to decrease by a factor of 1/e

Dodson's effective closure temperature

• After some mathematical manipulation we can solve for τ and find

$$\tau = -\frac{RT^2}{E_{\rm a}\dot{T}}$$

where \dot{T} is the cooling rate (negative by convention)

Dodson's closure temperature equation is

$$T_{\rm c} = \frac{E_{\rm a}}{R\ln(A\tau D_0/a^2)}$$

where A is a geometry factor (25 for a sphere, 27 for a cylinder and 8.7 for a plane sheet)

• We can find the closure temperature as a function of cooling rate by assuming $T=T_c$ in the equation for τ and iterating

Intro to Quantitative Geology

Pseudo-code for solving Dodson's equation

- Define constants
- Define initial "guess" for value of τ
- Loop over some range to iterate on values of τ and T_c
 - Calculate new T_c with current value of τ
 - Calculate new value of τ for new T_c value
 - Check to see how much value of T_c has changed since last iteration
 - If value has not changed more than some very small number, exit loop and output calculated 'final' T_c value

Dodson's effective closure temperature

• The effective closure temperature T_c increases significantly at <u>higher cooling rates</u>

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

- Using Dodson's equations, we're able to <u>calculate closure</u> <u>temperatures as a function of cooling rate</u>
 - This does not provide any information about the <u>depth of</u> <u>the closure temperature in the Earth</u>

- There are several possibilities for determining the depth (or position) of T_c , such as assuming a constant geothermal gradient
 - As quantitative geologists, we can do better...

• What is the basic idea for thermochronology?

• What is an effective closure temperature and how does it relate to the rate of cooling of a mineral sample?

• What is the basic idea for thermochronology?

• What is an effective closure temperature and how does it relate to the rate of cooling of a mineral sample?

Braun, J., der Beek, van, P., & Batt, G. E. (2006). *Quantitative Thermochronology*. Cambridge University Press.

Reiners, P.W., and M.T. Brandon (2006), Using Thermochronology to Understand Orogenic Erosion, Annual Review of Earth and Planetary Sciences, 34, 419–466.